
A Formal Definition of RESTful Semantic Web Services

Antonio Garrote Hernández
University of Salamanca

Salamanca, Spain
agarrote@usal.es

María N.Moreno García
University of Salamanca

Salamanca, Spain
mmg@usal.es

ABSTRACT
In this article a formal model applying REST architectural
principles to the description of semantic web services is intro-
duced, including the discussion of its syntax and operational
semantics. RESTful semantic resources are described using
the concept of tuple spaces being manipulated by HTTP
methods that are related to classical tuple space operations.
On the other hand, RESTful resources creation, destruction
and other dynamic aspects of distributed HTTP computa-
tions involving coordination between HTTP agents and ser-
vices are modeled using process calculus style named chan-
nels and message passing mechanisms.
The resulting model allows for a complete and rigorous de-
scription of resource based web systems, where agents tak-
ing part in a computation publish data encoded according to
semantic standards through public triple repositories identi-
fied by well known URIs. The model can be used to describe
complex interaction scenarios where coordination and com-
position of resources are required. One of such scenarios
taken from the literature about web services choreography
is analyzed from the point of view of the proposed model.
Finally, possible extensions to the formalism, such as the in-
clusion of a description logics based type system associated
to the semantic resources or possible extensions to HTTP
operations are briefly explored.

1. INTRODUCTION
In recent years, semantic web services [1] and RESTful [2]

web services have been two important topics for researchers
and practitioners in the field of distributed web computa-
tion, although they have remained largely unrelated.
RESTful web services have achieved a great success in their
application to actual web development but limited research
have been undertaken in their formalization and expressive-
ness. On the other hand, ongoing effort in the standard-
ization of semantic web services technology draws heavy in-
fluence from WS-* standards and retains strong RPC se-
mantics. Incipient proposals for developing more RESTful

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WS-REST 2010, April 26, 2010; Raleigh, NC, USA
Copyright 2010 ACM 978-1-60558-959-6/10/04 ...$10.00.

semantic web services like hRESTS [3] or SA-REST [4] are
working to bring the world of semantic web services closer to
the field of RESTful services. Nevertheless, different foun-
dations for the development of semantic web services like
triple space computing models have also been proposed [5].
This model shows remarkable similarities with the architec-
tural principles of HTTP and REST. This model can be
used to describe a kind of RESTful semantic web services
characterized by the following points:

• A RESTful semantic resource consists of a set of triples
stored in a certain shared memory repository accessible
by processes taking part in a computation.

• The triple space can be accessed through an associated
URI that can be linked from related resources.

• The triple space containing the resource’s triples can
be manipulated using HTTP requests issued to the
resource URI according to REST semantics.

This kind of RESTful web services may be applied to a
wide range of actual web resources from a XHTML page
with embedded RDFa [6] triples, to a web application con-
nected to a triple store. It is also conceptually similar to
the semantic web standard for the SPARQL protocol [spar-
qlprot].

In this paper a formal calculus for distributed computa-
tion using this kind of RESTful semantic web services will
be described. This formalism merges aspects from triple
space computation and other formalisms like process calculi
[7] to build a generic abstraction of the computational model
underlying RESTful semantic web services distributed com-
putation.

2. SEMANTIC RESOURCES AND TRIPLE
SPACES

The basis of the calculus is the manipulation of semantic
meta data represented as triples. Each triple has subject,
predicate and object, as described by the Resource Descrip-
tion Framework W3C’s recommendation [10]. Components
of a triple (v) can consist of URIs (µ) or literals (λ). Every
computation described in the calculus consists in the manip-
ulation of triples stored in shared data spaces known as triple
spaces [5] (θi) by a set of distributed processes (P, Q, ...) .
This model of distributed computation known as genera-
tive communication [11] was pioneered by the Linda system
for distributed computation. Linda original operations are

P ::= 0 | T | P |P | !P | if T ? P.P | x ::= T
T ::= rd(θi, p) | in(θi, p) | out(θi, v) | swap(θi, p, v) |

rdb(θi, p) | inb(θi, p) | notify(θi, ρ, v)

θ ::= { triple spaces }
ρ ::= {in, out}
µ ::= {URIs}
λ ::= {literals}
p ::= {patterns}
v ::= {values} = {µ} ∪ {λ}∪ < p, v > ∪ < p, θi >

Table 1: triple space operations syntax

used to describe the different ways in which a triple space
can be manipulated. Symbol rd designates an operation for
reading triples from a triple space without removing them,
in symbol for reading and removing the triples , and out
symbol defines an operation for inserting new triples in the
triple space. Blocking versions of rd and in operations are
also defined. In addition to these operations, the notify [12]
operation, which allows processes to be notified when other
process manipulates the triple space, and the atomic swap
operation [13], combining read and write in a single opera-
tion, are also defined.

A process in the calculus is defined as a finite sequence
of operations over the triple space. Parallel composition
of processes, replication and a simple type of conditional
based on the number of triples recovered from a triple by
an operation space and simple name matching of values are
defined.

Triple space operations accept as arguments sets of triples
(v) or patterns (p) that must be matched against triples in
the triple space. No particular pattern mechanism is chosen
in this definition of the calculus. It can be assumed that pat-
terns are a built using a subset of the SPARQL [14] query
language with basic name substitution [16]. A pattern can
be matched against a collection of tuples (< p, v >) or a
tuple space (< p, θi >) obtaining as a result a collection of
bindings for the pattern variables. Each of these bindings,
together with the original pattern, can be transformed into
a set of matched tuples or the empty set.

Operational semantics for this formal notation follows pre-
vious formalizations of Linda type systems [11]. We have
chosen to define ordered semantics for the triple space op-
erations. As a consequence, emission and rendering of mes-
sages can be regarded as a single atomic operation. It can
be proved that Linda systems with ordered semantics are
Turing complete [17]. Table 2 shows the semantics of the
calculus using labeled transitions:

The labeled transition relation → for triple space opera-
tions is the smallest one satisfying axioms (1) - (10). Rules
(1) and (2) are classical rules for parallel composition and
structural congruence of processes [7]. Rule (3) defines the
spawning of a new process. Rules (4) through (7) define the
main operations over triple spaces and how the reduction of
those rules modify the triples inside the triple space they are
applied to. Rules for the blocking versions of the operation
have been omitted for the sake of brevity. Rules (8) and (9)
define the semantics for the notify operation. They show

(1) P→P ′

P |Q→P ′|Q

(2) P→P ′

Q→Q′ ifP ≡ Q and P ′ ≡ Q′

(3) !P.Q→ Q | P

(4) rd(θi,p).P

rd(θi,p).P
<p,θi>

−−−−−→P

(5) in(θi,p).P

rd(θi,p).P
<p,θi>−−−−−→P,θi=θi−<p,θi>

(6) out(θi,v).P

out(θi,v).P
v−→P,θi=θi∪v

(7) swap(θi,p,v).P

swap(θi,p,v).P
<p,θi>,v−−−−−−→P,θi=θi−<p,θi>∪v

(8) out(θi,v).Q

notify(θi,out,p).P |out(θi,v).Q
v,<p,v>−−−−−→P |Q

(9) in(θi,p).Q

notify(θi,in,q).P |in(θi,p).Q
<p,v>,<q,<p,v>>−−−−−−−−−−−−→P |Q

(10) if T P.Q

if T P.Q
0−→Q

, if T P.Q

if T P.Q
v−→P

Table 2: operational semantics for triple space op-
erations

the relation with in and out operations and how the pattern
used as an argument for the notify operation is applied to
the triples removed in an in operation and written in an out
operation before the reduction of a notify rule takes place.
Finally, rule (10) defines the semantics for simple if branch-
ing construct defined in the calculus.

From this definition of operational semantics, remarkable
conceptual similarity between a triple space and a HTTP
resource can be observed. The syntax and semantics defined
for the triple space operations could be enough basis for the
description of RESTful architectures if key aspects of the
triple space model are identified with different aspects of
the HTTP protocol:

• A triple space can be identified with an HTTP re-
source.

• The identifier of the triple space can be identified with
the URI associated to a HTTP resource.

• GET HTTP operations can be defined as rd operations
over the triple space.

• POST HTTP operations can be defined as out opera-
tions over the triple space.

• PUT HTTP operations can be defined as swap opera-
tions over the triple space.

• DELETE HTTP operations can be defined as in op-
erations over the triple space.

P ::= 0 | T | M | P |P | !P | if T ? P.P | x ::= T |
new µ in P

M ::= req(µ)[m, p, v] | [m, p, v]req(µ) | resp(µ)[c, v] |
[c, v]resp(µ)

m ::= {get, post, put, delete}
c ::= {200, 201, 404, 401}

Table 3: process communication syntax

3. SEMANTIC RESOURCES AND RUNTIME
PROCESSES

The simple model for the description of HTTP resources
introduced in the previous section presents some important
shortcomings. In the original conception of the tuple space
model, the shared space is supposed to be globally available
and unique. On the contrary, a convenient way to model
HTTP resources involves the use of as many triple spaces
as resources are being modeled. As a consequence, these re-
sources would not be static shared spaces, but they would be
created after POST operations and destroyed with DELETE
operations. The definition for POST and DELETE opera-
tions discussed in the previous section, where both HTTP
methods were equated to out and in triple space operations,
does not fit into triple space model semantics, since out and
in operations can only manipulate triples but cannot create
and destroy whole triple spaces. The formalism could be
extended [15] introducing new operations over triple spaces
as well as triples. With these extensions, triple spaces could
be thought as processes in the calculus that can be spawned,
receive messages from other processes and finish their exe-
cution.

Other important feature of the triple space model that
have been defined is the ability to assign URIs to triple
spaces. Processes can gain access to new triple spaces by
reading triples containing URIs in their components. From
this point of view, triple spaces can be regarded as mobile
processes as described by the Pi-Calculus [7] [8]. In this
kind of process calculi, processes coordinate with each other
exchanging messages through named channels that can be
exchanged inside the components of the messages being re-
ceived or sent by processes.

The Pi-Calculus formalism is extremely useful for the de-
scription of web computation, since the concept of named
channels being exchanged between processes closely resem-
bles the exchange of web resources containing URIs between
clients and servers identified by URIs.

The calculus previously introduced can be expanded to al-
low this new way of inter process communication as shown
in table 3. The operations described are variants of the ones
described in the polyadic Pi-Calculus [9]. Messages can be
sent through named channels representing URIs (µ). Mes-
sages can be requests (req) or responses (resp) and processes
can send or receive both kind of messages. Messages them-
selves comprise a method (m), a pattern (p) and a value
(v), in the case of requests and a code (c) with a value for
responses. Additionally, a construction introducing a new
URI in a process and restricting its application (new µ in P)

(11) P
req(µ)[m,p,v]−−−−−−−−→P ′,Q

[m,p,v]req(µ)−−−−−−−−→Q′

P |Q→P ′|Q′

(12) P
resp(µ)[c,v]−−−−−−−→P ′,Q

[c,v]resp(µ)−−−−−−−→Q′

P |Q→P ′|Q′

(13) req(µ)[m,p,v].P

req(µ)[m,p,v].P
∗−→[c,v]resp(µ).Q

(14) [m,p,v]req(µ).P

[m,p,v]req(µ).P
∗−→resp(µ)[c,v].Q

Table 4: operational semantics for triple space op-
erations

is also defined.

Operational semantics for these operations are defined in
table 4. These rules also follow closely the operational se-
mantics defined for the polyadic Pi-Calculus. Rules (11)
and (12) are adaptations to the chosen syntax of the com-
munication rule from the Pi-Calculus, showing the reaction
between a process sending a message and a process receiving
a message. Rules (13) and (14) impose restrictions in the or-
der requests and responses can be exchanged. According to
these axioms, if a process sends a request through an URI,
it must expect a response in a certain number of reductions.
In the same way, if a process receives a request through an
URI it must send a response through the same URI in a
certain number of reductions.

The syntax and semantics described make possible the de-
scription of HTTP resources as processes receiving messages
through URIs from HTTP agent processes. These messages
consist of a HTTP operation plus a triple pattern and/or
semantic meta data. Resource processes can be spawned
from other processes after receiving a POST request and
can finished its execution after receiving a DELETE mes-
sage. Responses returned from resource processes to agent
processes can also contain URIs referencing other resources.

4. MODELING RESTFUL SEMANTIC SER-
VICES

In previous sections, two different formalisms for distributed
computing have been introduced: the triple space comput-
ing model and mobile processes calculus. Both formalism of-
fer different coordination mechanisms among processes per-
forming a distributed computation: distributed shared mem-
ory the former and message passing the later. Both mech-
anisms can be regarded as variants of a more generic inter-
process coordination mechanism [16]. Nevertheless, each
model is specially well suited for the description of certain
aspects of computations using RESTful semantic services.
The triple space formalism offers an excellent description of
semantic RESTful resources as static repositories of seman-
tic data, using operations over the stored data as the main
coordination mechanism among processes manipulating the
stored triples. Conversely, process calculi are well suited
for the description of the HTTP protocol as a message pass-
ing mechanism through named channels (URIs associated to
IPs) among web agent processes and resource processes, as
well as for the description of the dynamic aspects of REST-

RREST (θ, µ) ::= [m, v, p]req(µ). if m = get ? Rget(θ, µ).
if m = post ? Rpost(θ, µ).
if m = put ? Rput(θ, µ).
if m = delete ? Rdelete(θ, µ).
resp(µ)[406, 0].RREST (θ, µ)

Rget(θ, µ) ::= x ::= rd(θ, p).resp(µ)[200, x].RREST

Rpost(θ, µ) ::= new ν in out(θ, < p, ν >).!R(θ, ν).
resp(µ)[201, < p, ν >].RREST

Rput(θ, µ) ::= swap(θ, p, v).resp(µ)[200, v].RREST

Rdelete(θ, µ) ::= in(θ, pµ).resp(µ)[200, 0].0

Table 5: parametric definition of a simple semantic
RESTful resource

ful semantic resources such as their creation and destruction.

In this section, a description of semantic RESTful com-
putation is defined by combining aspects of both formalisms
and using the syntax and operational semantics introduced
in previous sections. The main features of this model can
be summarized as follows:

• Any computation is performed by distributed processes:
agents and resources.

• Any process has a number of associated triple spaces
that can be manipulated using triple space operations.

• A certain number of processes sharing the same triple
spaces can be grouped in a computational locus: a
server web application or a web browser application
are examples of computational loci.

• Resource processes will have an associated named chan-
nel (URI) where they can receive messages from other
processes.

• Agent processes do not have associated named chan-
nels but can send messages to resource processes through
URIs stored in their triple spaces.

• Intra computational locus coordination is triple space
based, inter computational loci coordination is mes-
sage passing based

• Named channels (URI) can be exchanged via message
passing and they can be stored as part of the triples
inside a triple space

• Triple space handlers cannot be exchanged via message
passing

Using this model, a semantic RESTful resource can be
formalized as a process with an associated triple space and
URI, processing remote requests according to REST seman-
tics: SREST (θ, µ). Table 5 shows the formalization of a basic
semantic RESTful resource.

This definition of a RESTful semantic web service de-
scribes a process with an associated triple space that re-
ceives messages through an assigned URI. If the message is
a get HTTP request the process simply applies the triple
pattern received to the associated triple space, and returns
the matching triples. If the message is a post HTTP request,
the process introduces a new URI and binds the subject of
the triple pattern sent in the request to the new URI, gener-
ating as a result a new set of triples. These triples are writ-
ten into the triple space and a new process for the resource
to be created, associated to the same triple space and the
new URI is spawned. The URI of the new resource process
is returned in the response message for the HTTP POST
operation. A put HTTP request containing a pattern and a
set of new triples is transformed into a swap operation over
the associated triple space, where the triples matching the
received pattern are removed and replaced by the received
triples. Finally, a delete operation means the end of the ex-
ecution of the resource process as well as the deletion from
the triple space of all the triples containing the resource as-
sociated URI (pµ).

Figure 1: Sample semantic RESTful computation

Figure 1 shows a graphical representation of the proposed
model displaying one client application and three different
domains. Each domain hosts a semantic RESTful web ser-
vice with an associated triple space and URI. The client
application contains two agent processes that communicate
with each other through the client application triple space.
Agent processes can send messages to the resources at do-
main 1 and domain 2 through the URIs associated to each
resource process. Domain 2 also contains an agent. When

the resource at domain 2 modifies the triple space, the agent
at domain 2 receives a notify message and starts the com-
munication with the resource at domain 3.

5. COORDINATION AND COMPOSITION
OF RESTFUL RESOURCES

One of the main goals of the formalization of RESTful
semantic services is the possibility of describing interaction
patterns between resources and clients. Complex processes
and workflows can be modeled as well defined and reusable
descriptions, that can be automatically executed by software
implementations of the calculus.

Different frameworks for web services orchestration and
choreography have been proposed in the world of WS-* web
services, like the W3C standard WS-CDL [18]. In this sec-
tion, a simple example taken from WS-CDL literature [19],
will be formalized using the calculus introduced in previous
sections.

The problem discussed involves three parties: a Buyer, a
Seller and a Shipper actors, performing a purchase transac-
tion. The protocol is described in the following terms:

• Buyer asks Seller to offer a quote for a fixed good.

• Seller replies with a quote.

• Buyer accepts or rejects the quote.

• If buyer accepts, then Seller sends a confirmation to
Buyer, then asks for delivery details to the Shipper.

• Finally, Shipper sends the delivery details to Buyer.

In order to describe this system using RESTful seman-
tic web services, three different computational loci must be
defined:

• The buyer client application, containing a Buyer HTTP
agent process.

• The Seller web application, containing two resources:
Products and PurchaseOrders.

• The Seller web application contains also a QuoteUp-
dater agent and a Shipper agent.

• The Buyer web application, containing one resource:
ShipmentOrder.

Proper definition of the semantic meta data for the Prod-
uct, PurchaseOrder and ShipmentOrder resources in some
ontology definition language like OWL, as well as the pre-
cise content of the triple patterns, are not included for the
sake of brevity. A full description of the computation is
shown in figure 2

The Buyer HTTP agent is described in table 6.The defi-
nition of the process is parametric on the URI of the Prod-
uct resource to buy (µp). The Buyer agent creates a new
PurchaseOrder resource through the URI µpos in the Seller
application using a POST request. The pattern sent in this
request (pno) includes the URI of the product to be pur-
chased and a literal for the state of the order with value
”created”.

Figure 2: Sequence diagram for the modeled trans-
action

Buyer(µp) ::= CreateOrder.PollQuote

CreateOrder ::= req(µpos)[post, pno, 0].
[201, µpo]resp(µpos)

PollQuote ::= req(µpo)[post, pq, 0].
[200, q]resp(µpos).
if q ? ProcessOrder.PollQuote

ProcessOrder ::= req(µpo)[get, pmp, 0].
[200, vq].resp(µpo).
if vq ? AcceptOrder.RejectOrder

AcceptOrder ::= req(µpo)[put, pmp, accept].
[200, x]resp(µpo).0

RejectOrder ::= req(µpo)[delete, 0, 0].
[200, x]resp(µpo).0

Table 6: Buyer application processes

After the order is created and the URI for the new Pur-
chaseOrder resource is returned µpo, the Buyer process starts
polling the newly created resource using GET requests con-
taining a triple pattern that tries to retrieve the triples for
the resource µpo with an state of ”quoted” (pq). When one of
these GET requests returns successfully with some triples,
the Buyer agent issues a new GET request trying to retrieve
the triples for the PurchaseOrder resource identified by µpo,
with price minor or equal to literal value min price, using
the pattern pmp.

If this last GET request fails, the Buyer agent rejects the
quote deleting the resource with a delete request. On the
other hand, if some triples are returned, the Buyer process
accepts the quote issuing a PUT request to the Purchase-
Order process, updating in this way the state of the resource
to the value ”accepted”.

The Seller web application, described in table 7, contains
two RESTful semantic resources Products (Prodsrest) and
PurchaseOrders (PurchOrdsrest). Both of them have their
associated triple spaces (θp, θpo). These triple spaces are also
manipulated by two agent processes QuoteUpdater (QUpd)
and Shipper (Ship). QuoteUpdater gets a notification af-
ter each write operation of triples matching state ”created”
(pno). Then, it goes through an internal transition τ that
generates a price for the product in the PurchaseOrder and,

Prods ::= Rrest(µps, θp)

PurchOrds ::= Rrest(µpos, θpo)

QUpd ::= notify(θpo, write, pno).pr ::= τ.
swap(θpo, pno, << pno, quoted, > pr >)
.QUpd

Ship ::= notify(θpo, write, pok).
req(µs)[post, ppok, 0].
[201, so]resp(µs)
swap(θpo, ppok, so).Ship

Table 7: Seller web application

Shipms ::= Rrest(µs, θs)

Table 8: Shipment web application

finally, updates its triples with the price and a state of
”quoted”.

The Shipper agent gets notified when a new set of triples
for a resource with state ”accepted” (pok) is written in the
PurchaseOrders triple space. After receiving this notifica-
tion, it issues a POST request to the ShipmentOrders re-
source and updates the state of the PurchaseOrders resource
with the state of ”shipped” and a reference to the newly cre-
ated ShipmentOrders resource.

Finally, The Shipment web application just contains a
REST resource for the ShipmentOrders resources (Shipms).
The formalization of the Shipment web application is shown
in table 8.

6. CONCLUSIONS AND FUTURE WORK
RESTful semantic web services have the potential to en-

able a new generation of distributed applications, retaining
the scalable and successful architecture of today’s web, and
adding the powerful data description and interoperability
capacities of semantic data.

With this paper we have tried to provide a precise defini-
tion of a certain theoretical model for this kind of compu-
tation, combining two well known formalisms: tuple space
computing and process calculi.

We have found that both formalisms are specially well
suited for describing different aspects of RESTful semantic
computation: triple space computing as a way of describing
computations taking place inside computational loci, like
web applications, that will be exposed to external processes
as RESTful resources, and process calculus for the descrip-
tion of the exchange of HTTP messages between HTTP
agents across different computational loci.

In our conception, RESTful semantic services are just pro-
cesses receiving HTTP messages through a well known URI
and manipulating an associated triple space according to the
messages received and REST semantics.

As an example of how this calculus can be used for describ-
ing actual computations, a basic example from the literature
on web services orchestration has been formalized in terms
of a set of RESTful semantic web services and agents.

Further work on the calculus should deal with different
aspects not presented in this article.

A type theory for the calculus must be developed. On-
tology languages like OWL, rooted in the theoretical back-
ground of description logics, make possible the introduction
of type systems dealing with well typed patterns and values
associated to URIs and RESTful resources.

In its current form, the calculus describes computations as
different sets of equations for each party taking part in the
interaction. A global calculus for the description of the com-
putation [19] must be defined, taking into account the inher-
ent duality of the message passing operations introduced in
the present formalism.

Furthermore, the message passing portion of the calcu-
lus lacks some features present in the triple space portion,
like the presence of blocking operations, or a notification
mechanism. Research must be taken in the different ways of
extending REST semantics to allow this kind of coordina-
tion primitives in HTTP agents, communicating with each
other through a shared RESTful resource.

A current implementation of the introduced calculus, built
on top of technologies like Erlang OTP, RabbitMQ AMQP
queue broker and the Open Sesame triple repository is cur-
rently being developed. In this implementation extensions
of HTTP operations with blocking semantics, notifications
and a subscription mechanism based in the websockets [20]
standard have also being tested as part of our ongoing re-
search on RESTful semantic web services.

7. REFERENCES
[1] Fensel D. et alt. (2006) Enabling Semantic Web

Services: The Web Service Modeling Ontology
Springer-Verlang.

[2] Fielding R. (2000) Architectural Styles and the Design
of Network-based Software Architectures
University of California, Irvine

[3] Kopecky, Vitvar & Fensel. (2009) hRESTS and
MicroWSMO
CMS WG Working Draft

[4] A. P. Sheth & K. Gomadam & J. Lathem. (2007)
SA-REST: Semantically Interoperable and
Easier-to-Use Services and Mashups
IEEE Internet Computing, pages 91-94

[5] Fensel. (2004) D. Triple-space computing: Semantic
Web Services based on persistent publication of
information
IFIP Internation Conf. on Intelligence in
Communication Systems, pages 43-53

[6] Adida & Birbeck. (2008) RDFa in XHTML: Syntax
and Processing
W3C Recommendation

[7] R. Milner (1999) Communicating and Mobile Systems:
the Pi-Calculus
Cambridge University Press

[8] R. Milner & J. Parrow & D. Walker (1989) A calculus
for mobile processes

University of Edinburgh
[9] R. Milner (1991) The Polyadic Pi-Calculus: a Tutorial

Logic and Algebra of Specification
[10] P. Hayes. (2004) RDF Semantics

W3C Recommendation
[11] D. Gelernter. (1985) Generative communication in

Linda
ACM Transactions on Programming Languages and
Systems, vol 7, pages 80-12

[12] N. Busi & R. Gorrieri & G. Zavattaro. (2000) Process
Calculi for Coordination: from Linda to JavaSpaces
Proc. of AMAST, LNCS 1816, pages 198-212

[13] A. Neves & E. Pelison & M. Correia & J. Da Silva.
(2008) DepSpace: A Byzantine fault-tolerant
coordination service
Proceedings of the 3rd ACM SIGOPS/EuroSys
European Conference on Computer Systems -
EuroSys, pages163-176

[14] A. Seaborne & E. Prud’homeaux. (2008) SPARQL
Query Language for RDF
W3C Recommendation

[15] E. Simperl & R. Krummenacher R. & L. Nixon. (2007)
A Coordination Model for Triplespace Computing
9th International Conference on Coordination Models
and Languages, pages 1-8

[16] D. Gorla (2006) On the relative expressive power of
asynchronous communication primitives
Proceedings of 9th International Conference on
Foundations of Software Science and Computation
Structures, vol 3921, pages 47-62

[17] N. Busi & R. Gorrieri & G. Zavattar. (2000) On the
Expresiveness of Linda Coordination Primitives
Information and Computation

[18] Kavantzas & Burdett & Ritzinger & Fletcher & Lafon.
(2005) Web Services Choreography Description
Language Version 1.0
W3C Candidate Recommendation

[19] M. Carbone & K. Honda N. Yoshida & R. Milner &
G. Brown & S. Ross-talbot. (2006) A theoretical basis
of communication-centred concurrent programming

[20] I. Hickson. (2010) The Web Sockets API
W3C Editor’s Draft

